Quasi-multipliers of operator spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasi-multipliers and Algebrizations of an Operator Space

Let X be an operator space, let φ be a product on X , and let (X, φ) denote the algebra that one obtains. We give necessary and sufficient conditions on the bilinear mapping φ for the algebra (X, φ) to have a completely isometric representation as an algebra of operators on some Hilbert space. In particular, we give an elegant geometrical characterization of such products by using the Haagerup ...

متن کامل

Multipliers of Operator Spaces, and the Injective Envelope

We study the injective envelope I(X) of an operator space X, showing amongst other things that it is a self-dual C∗module. We describe the diagonal corners of the injective envelope of the canonical operator system associated with X. We prove that if X is an operator A-B-bimodule, then A and B can be represented completely contractively as subalgebras of these corners. Thus, the operator algebr...

متن کامل

On the boundedness of the Marcinkiewicz operator on multipliers spaces

Let h(y) be a bounded radial function and Ω (y) an H function on the unit sphere satisfying the cancelation condition. Then the Marcinkiewicz integral operator μΩ related to the Littlewood-Paley g−function is defined by

متن کامل

One - Sided M - Ideals and Multipliers in Operator Spaces , I

The theory of M-ideals and multiplier mappings of Banach spaces naturally generalizes to left (or right) M-ideals and multiplier mappings of operator spaces. These subspaces and mappings are intrinsically characterized in terms of the matrix norms. In turn this is used to prove that the algebra of left adjointable mappings of a dual operator space X is a von Neumann algebra. If in addition X is...

متن کامل

- Sided M - Ideals and Multipliers in Operator Spaces

The theory of M-ideals and multiplier mappings of Banach spaces naturally generalizes to left (or right) M-ideals and multiplier mappings of operator spaces. These subspaces and mappings are intrinsically characterized in terms of the matrix norms. In turn this is used to prove that the algebra of left adjointable mappings of a dual operator space X is a von Neumann algebra. If in addition X is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 2004

ISSN: 0022-1236

DOI: 10.1016/j.jfa.2004.06.002